A data-driven algorithm to optimize the placement of continuous monitoring sensors on oil and gas sites

Meng Jia, Troy Sorensen, Dorit Hammerling

Applied Mathematics and Statistics Colorado School of Mines

November 15, 2023 Durham, NC

Outline

Problem Setup

?

Experiments & Results

Conclusions & Future Work

Outline

Problem Setup

?

Experiments & Results

Conclusions & Future Work

Problem Setup

• We propose a data-driven algorithm to optimize sensor placement for continuous monitoring systems (CMS).

Problem Setup

- General idea
	- Use historical wind data and available emission information to simulate M many emission scenarios.
	- \blacksquare Prescribe N possible sensor locations.
	- Find optimal sensor placement from all feasible configurations, under the given budget k , to maximize the detection from all M emission scenarios.

Outline

? Problem Setup Algorithm <u>Ы.</u> Experiments & Results

Conclusions & Future Work

Algorithm

- Step 1: generate emission scenarios.
- Step 2: prescribe potential sensor locations and simulate concentrations.
- Step 3: check detection status.
- Step 4: solve an optimization problem to find the best sensor placement.

Methane Emissions Technology Evaluation Center (METEC), Colorado State University

Algorithm

• Step 1: generate emission scenarios

A combination of

- wind speed time series
- wind direction time series
- emission source location
- emission rate

defines an emission scenario.

Random sample segments from historical wind time series

- 1. Estimate a joint distribution of emission location and rate from prior knowledge
- 2. Random sample

Step 1.1 Wind Data

Step 1.2 Emission Information

Potential emission sources on METEC

Probability of emission location and rate pair

Algorithm

- Step 2: prescribe possible sensor locations and simulate concentrations
	- Set possible sensor locations by gridding the site in 3D.
	- Filter out invalid locations.
	- For each (emission scenario, sensor location) pair, run Gaussian puff model to compute the CH4 concentration time series.

Step 2.1 Sensor locations

Resolution in Easting and Northing directions = 1 m Resolution in vertical direction = 0.5 m

Step 2.2 Gaussian puff simulation

Algorithm

- Step 3: check detection status
	- Use thresholds to determine if a sensor detects an emission scenario.
	- Create a detection matrix.

Step 3.1 Thresholds

- Detection $=$ {elevated concentration above [ppm] for more than $B\%$ of time steps within the period}
- \bullet A is determined by sensor sensitivity
- \cdot \cdot \cdot \cdot is set based on the tolerance for false positives

An example of a successful detection. $A = 0.5$ [ppm] $B = 20\%$ 20 out of 60 (33%) points ≥ 0.5 [ppm].

Step 3.2 Detection Matrix

Rows of D : Sensor Locations (SL)

Cols of D : Emission Scenarios (ES)

 $D_{ij} = 0$, if SL_i can detect ES_j; $D_{ij} = 1$, otherwise

Detection Matrix D

Algorithm

- Step 4: solve an optimization problem to find the best sensor combination
	- Formulate the problem as a best subset selection task.
	- Employ the Pareto optimization framework with evolutionary algorithms (EA) to find the optimal solution.

Step 4.1 Best Subset Selection

Step 4.2 Pareto Optimization & EA

Pareto Optimization

Objectives:

Find a subset of rows (a solution) from the detection matrix to

- maximize emission scenario coverage.
- minimize the size of the subset.

Exhaustive search and standard linear programming algorithms are impossible for large-scale problem!

Evolutionary Algorithms

Process:

- 1. Randomly initialize a population of solutions.
- 2. Propose new solutions by perturbing existing solutions.
- 3. Update the population by eliminating worse solutions.
- 4. Repeat Step 2 & 3 until converge.
- 5. Return the best k -size solution.

Outline

? Problem Setup

Algorithm

Experiments & Results

Conclusions & Future Work

Experiments & Results

• Emission Scenarios

- 4-month wind data
- 5 potential source locations
- 3 possible emission rates: {10, 20, 50} [kg/h]
- $\bullet \Longrightarrow 38,130$ emission scenarios

• Sensor locations

- 1 [m] resolution in easting & northing
- 0.5 [m] resolution in vertical
- $\cdot \Rightarrow 96,840$ sensor locations

Experiments & Results – best-8 sensor placement

 E

Experiments & Results $-$ best- k sensor placement

 E

 $N-E$

 $S-E$

Experiments & Results – budget vs. coverage

Outline

 $\boldsymbol{?}$ Problem Setup

Algorithm

Experiments & Results

Conclusions & Future Work

Conclusions & Future Work

- Developed a data-driven algorithm for sensor placement more accurate and efficient than traditional methods.
- The algorithm's modularity ensures adaptability to various monitoring needs.
- Optimized for solving large-scale problems efficiently.
- To implement a generative model for better approximation of wind distributions, thereby expanding the emission scenario database.
- To investigate advanced data embedding techniques to manage and solve problems of greater scale.

- Klise, Katherine A., et al. "Sensor placement optimization software applied to site-scale methane-emissions monitoring." *Journal of Environmental Engineering* 146.7 (2020): 04020054.
- Qian, Chao, Chao Bian, and Chao Feng. "Subset selection by pareto optimization with recombination." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 34. No. 03. 2020.

Questions?

Thank you for attending!

Back up

Background

- Methane, CH4, is the second biggest cause of climate change after CO2.
- Oil & gas sector gives off 15-20% of total methane.
- Characters of emission from oil & gas
	- high temporal variability
	- infrequent, short-lived super emitters
- Continuous monitoring system (CMS) is necessary

Fence Line Placement on METEC

Continuous monitoring (CM) sensor

Test EA on synthetic large matrix

- nrows = $ncols = 100,000$
- $k = 10$, randomly placement in the big matrix
- Test on 30 cases and run 10 EA algorithm for each case

Optimality Guarantee

• In theory, we prove that for subset selection with monotone objective functions, PORSS can achieve the optimal polynomial-time approximation guarantee, $1 - e^{\gamma}$ where γ is the submodularity ratio measuring how close your objective function is to submodularity.

Related Work

EA vs. Greedy Search

• EA vs. greedy search

Experiments & Results - robustness

Use a different set of 10,000 emission scenarios to validate the performance of the optimal sensor placement.

Why some scenarios are always undetected?

Best-1 Sensor Placement

Best-1 sensor placement, coverage ratio $= 0.40$

Best-2 Sensor Placement

Best-2 sensor placement, coverage ratio $= 0.65$

40

Best-3 Sensor Placement

Best-3 sensor placement, coverage ratio $= 0.75$

Best-4 Sensor Placement

Best-4 sensor placement, coverage ratio $= 0.82$

Best-5 Sensor Placement

Best-5 sensor placement, coverage ratio $= 0.86$

Best-6 Sensor Placement

Best-6 sensor placement, coverage ratio $= 0.89$

Best-7 Sensor Placement

Best-7 sensor placement, coverage ratio $= 0.92$

Best-8 Sensor Placement

Best-8 sensor placement, coverage ratio $= 0.93$

Best-9 Sensor Placement

Best-9 sensor placement, coverage ratio $= 0.95$

Best-10 Sensor Placement

Best-10 sensor placement, coverage ratio $= 0.96$

 E