Well Logs Interpolation and Uncertainty Analysis Using Neural Processes

Meng Jia Mentored by Haibin Di

Geophysics Techonology Center, Schlumberger, Houston, Texas *MJia@slb.com*

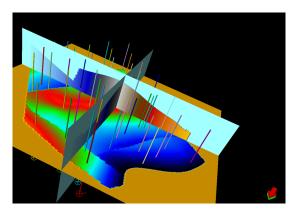
July 30, 2021

Overview

- Problem Description
- Neural Networks and Gaussian Processes
- 3 Attentive Neural Processes
- 4 Experiments
- 6 Results
- **6** Conclusions and Future Work

Problem Description

- We aim to predict (or interpolate) the well log properties for an entire site cube from sparsely available well logs and to use seismic data as reference.
- In addition, we want to quantify the uncertainty of the predictions.



Problem Description

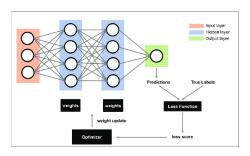
• We can formulate the problem as finding \hat{f} , a good approximation of f, the true function. We then use \hat{f} for prediction and quantify the uncertainty

$$y = f(x) = f(i, j, k, s)$$

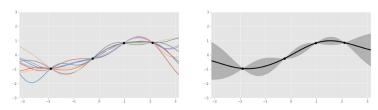
where y is some well property, i, j, k are the coordinates, s denotes the seismic data.

- The task is two-fold:
 - Find \hat{f} , a good approximation of f which is used for prediction.
 - Neural networks
 - Quantify the uncertainty of new predictions, i.e., $SD(\hat{f}(x^*))$, where x^* denotes a new observation point.
 - MC dropouts
 - Gaussian processes

- A neural network (NN) is a parameterized function that can be tuned via gradient descent to approximate the ground truth.
- Parameters (or weights) are updated in a back-propagation pass. New predicted value is computed in a forward pass.



 A Gaussian process (GP) is a probabilistic model that defines a distribution over possible functions, and is updated in light of data via the rules of probabilistic inference.



A GP can also be considered as a random function

$$F: \mathcal{X} \mapsto \mathcal{Y}$$

such that for any finite sequence $x_{1:n} = (x_1, \dots, x_n)$, $(F(x_1), \dots, F(x_n))$ follows a multivariate normal distribution.

- A GP is fully determined by
 - a mean function $m(x) \in R^n$ and
 - a covariance or kernel function $K(x, x') \in \mathbb{R}^{n \times n}$

written as:

$$F \sim GP(m(x), K(x, x'))$$

• For a particular instantiation $x_{1:n} = (x_1, \dots, x_n)$:

$$(F(x_1), \ldots, F(x_n)) \sim MN(m(x_{1:n}), K(x_{1:n}, x'_{1:n}))$$

 A GP defines a prior over functions, which can be converted into a posterior over functions once we have seen some data.

Theorem

Let $f = (F(x_1), ..., F(x_n))$ be the data we have seen (or called context points) and $f^* = (F(x_1^*), ..., F(x_m^*))$ the data we want to predict (or called target points). In addition, the prior over $(f, f^*)^T$ is given by:

$$\begin{pmatrix} f^* \\ f \end{pmatrix} \sim MN \left(\begin{pmatrix} \mu_* \\ \mu \end{pmatrix}, \begin{pmatrix} K(\mathbf{x}_i, \mathbf{x}_j) & K(\mathbf{x}_i, \mathbf{x}_k^*) \\ K(\mathbf{x}_k^*, \mathbf{x}_i), & K(\mathbf{x}_k^*, \mathbf{x}_i^*) \end{pmatrix} \right)$$

Then the posterior for the unseen data f^* conditioned on f is given by:

$$f^*|f \sim MN(\mu_{f^*|f}, \Sigma_{f^*|f})$$

where

$$\mu_{f^*|f} = K(x_k^*, x_i)K^{-1}(x_i, x_j)f$$

$$\Sigma_{f^*|f} = K(x_k^*, x_i^*) - K(x_k^*, x_i)K^{-1}(x_i, x_j)K(x_i, x_k^*)$$

Neural Network

Pros

- Predictions are accurate.
- Computational complexity is
 O(n) in the inference process
 where n is the number of data
 points.

Cons

- Only one single approximated function is found.
- Cannot be adapted once the training phase is done.

Neural Network

Pros

- Predictions are accurate.
- Computational complexity is
 O(n) in the inference process
 where n is the number of data
 points.

Cons

- Only one single approximated function is found.
- Cannot be adapted once the training phase is done.

Gaussian Processes

Pros

- A distribution over potential functions is produced → uncertainty analysis
- Shift some of the workload from training to testing time → more model flexibility

Cons

- The kernel needs to be given prior to fitting the GPs model.
- Computational complexity is $O(n^3)$ in the inference process.

Basic Idea

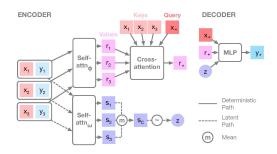
Since a Gaussian process can be considered as a random function, we approximate a Gaussian process $y \sim \mathcal{GP}(x)$ by:

$$y = g(x, z)$$

where z is a high-dimensional latent random vector capturing all the randomness in the GP, and is assumed to be multivariate normal; g() is a fixed and learnable function. Our goal is to find

Model Overview

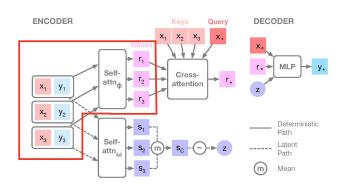
- Encoder
 - Deterministic Encoder
 - Cross Attention
 - Latent Encoder
- Decoder



Kim et.al. 2019

Model - Deterministic Encoder

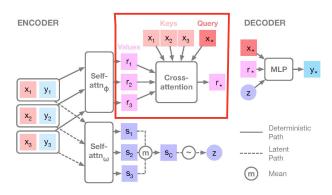
Compute representations of each each (x, y) pair in the context set through a self attention model, i.e., $r_i = h_\phi(x_i, y_i), i \in C$



Model - Cross Attention

Compute the representation for each target query x_* by attending to all the context $x_C = (x_i)_{i \in C}$ using cross-attention mechanism, i.e., $r_* = r^*(x_C, r_C, x_*)$

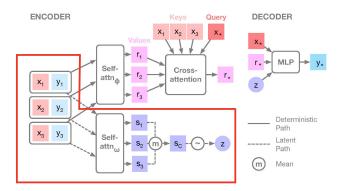
Here we choose multihead as our cross-attention model.



Model - Latent Encoder

Find the distribution of the high-dimensional random vector z representing the global randomness of the system.

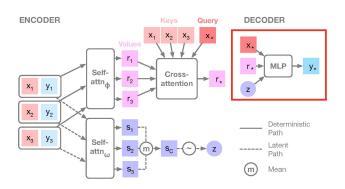
• Here we assume z follows a multivariate normal distribution.



Model - Decoder

Compute the distribution of the target output $p(y_*|x_*, r_C, z)$

• $p(y_*|x_*, r_C, z)$, by definition, is a multivariate normal distribution.



Loss Function

$$\max\{\log p(y_T|x_T,x_C,y_C)\}$$

which, by variational inference, is equivalent to

$$\max\{\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_C, y_C)}[\log p(y_T|\mathbf{x}_T, \mathbf{z})] - \mathsf{KL}\left(q(\mathbf{z}|\mathbf{x}_T, y_T) \| q(\mathbf{z}|\mathbf{x}_C, y_C)\right)\}$$

Experiments

Data Description

We use a $700 \times 327 \times 397$ (vertical \times crossline \times inline) cube of synthetic data to benchmark our model. There are 36 well logs in the cube recording porosity values.

- # points in total = 90,873,300
- # seismic point = 18, 167, 447
- # porosity point = 12159 (in 36 well logs)

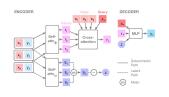
Input & Output

- Input: $x = (i, j, k, flatten(s_{cube}))$
- Output: y

Variable Name	Description	
$(i,j,k) \in \mathbb{R}^3$	Location indices of the target point, vertical, crossline, and	
	inline, respectively	
$s\in\mathbb{R}$	Seismic value at the target point	
$s_{cube} \in \mathbb{R}^{7 \times 5 \times 5}$	A $7 \times 5 \times 5$ (vertical × crossline × inline) seismic cube centered	
	at the target point	
$y \in \mathbb{R}_+$	Porosity value at the target point	

Experiments

Model Architecture



Model Component	Structure		
Deterministic Encoder	sizes = $[128, 128, 128, 128]$ activation function = $[relu, relu, relu, dense]$		
Cross Attention	$ \begin{aligned} & \text{sizes} = [128] \\ & \text{activation function} = [\text{Conv1D}] \\ & \# \text{ heads} = 16 \end{aligned} $		
Latent Encoder	sizes = [128, 128, 128, 128] activation function = [relu, relu, relu, dense]		
Decoder	sizes = $[128, 128, 2]$ activation function = $[relu, relu, dense]$		

Other Setups

- Scale i, j, k to range [0, 1] and amplify seismic values by 10.
- Set 0.001 as an lower bound of $SD(\hat{y}_*)$
- # training iterations = 500,000

Results - Training

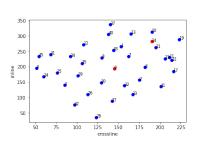
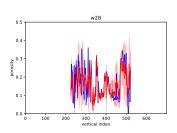
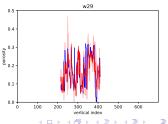
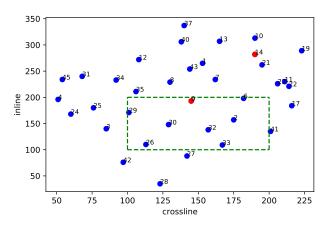


Figure: Training and validation data distribution

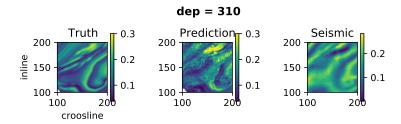


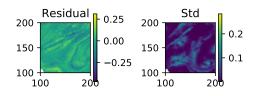


Test Data Distribution
 Depth range = [300, 350]

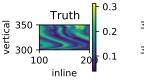


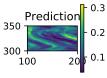
• Example - a slice at depth = 310

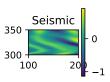


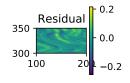


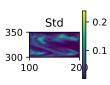
• Example - a slice at crossline = 180



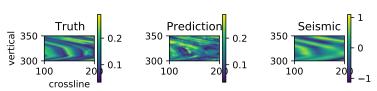


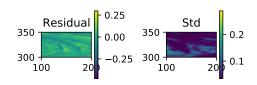






• Example - a slice at inline = 180





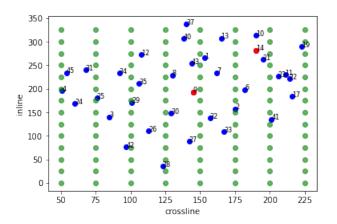
• Results at all depths

• Results at all crossline indices

Results at all inline indices

Results - Vertical Logs

Test Data Distribution



Results - Vertical Logs

Examples

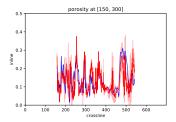


Figure: A good example

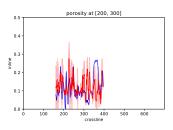
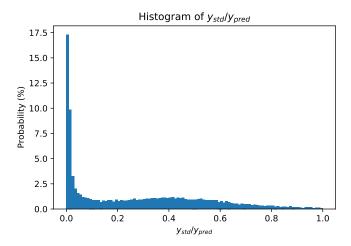


Figure: A bad example

Results - Uncertainty Analysis

• Histogram of y_{std}/y_{pred}



Results - Uncertainty Analysis

• Confidence Interval (CI) Coverage

$$y_{true} \in [y_{pred} \pm z_{\alpha} * y_{std}]$$

Confidence Level (α)	Z_{α}	Coverage (%)
.95	1.960	89.75
.90	1.645	85.32
.68	1.000	59.39

Conclusions and Future Directions

Conclusions

- Attentive neural processes is an adaptive and computationally efficient model for prediction and the corresponding uncertainty analysis.
- The use of seismic patch as input and cross-attention improve the prediction accuracy.
- The standard deviation of the predicted values is highly correlated with the residuals, which is unexpected in Gaussian processes-based models.
- The estimated standard deviation is reasonable in terms of the CI coverages.

Future Work

- More inspections on the standard deviation of the predictions.
- Run inference for the entire cube (computational issues occurred on Google Cloud Computation Platform)
- Apply the model to Groningen data
- Adapt the model for few-shots regression
- Convolutional neural processes

References

- Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D.J., Eslami, S.M. and Teh, Y.W., 2018. Neural processes. arXiv preprint arXiv:1807.01622.
- Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O. and Teh, Y.W., 2019. Attentive neural processes. arXiv preprint arXiv:1901.05761.
- https://github.com/deepmind/neural-processes

Acknowledgement

- Haibin, for being a good and kind mentor and all the help along the way
- Zhun, for all the discussions and precious suggestions
- Hiren, Aria, for insights into my project
- Anisha, Tao, for setting up computational resources
- Everyone in the group, for every interesting topics in the casual meetings

Thank you!

Appendix - Multihead Attention

Let Q, K, V denote the query, keys, and values in the query system, respectively.

$$\begin{aligned} \textbf{MultiHead}(Q, K, V) &= \mathsf{concat}(\mathsf{head}_1, \dots, \mathsf{head}_H) W \\ \mathsf{head}_h &= \textbf{DotProduct}(QW_h^Q, KW_h^K, VW_h^V) \\ \textbf{DotProduct}(Q, K, V) &= \mathsf{softmax}(QK^T / \sqrt{d_k}) V \end{aligned}$$