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Problem Description

We aim to predict (or interpolate) the well log properties for an entire
site cube from sparsely available well logs and to use seismic data as
reference.

In addition, we want to quantify the uncertainty of the predictions.
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Problem Description

We can formulate the problem as finding f̂ , a good approximation of
f , the true function. We then use f̂ for prediction and quantify the
uncertainty

y = f (x) = f (i , j , k , s)

where y is some well property, i , j , k are the coordinates, s denotes
the seismic data.

The task is two-fold:
Find f̂ , a good approximation of f which is used for prediction.

Neural networks

Quantify the uncertainty of new predictions, i.e., SD(f̂ (x∗)), where x∗

denotes a new observation point.

MC dropouts
Gaussian processes
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Neural Networks and Gaussian Processes

A neural network (NN) is a parameterized function that can be tuned
via gradient descent to approximate the ground truth.

Parameters (or weights) are updated in a back-propagation pass. New
predicted value is computed in a forward pass.
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Neural Networks and Gaussian Processes

A Gaussian process (GP) is a probabilistic model that defines a
distribution over possible functions, and is updated in light of data via
the rules of probabilistic inference.
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Neural Networks and Gaussian Processes

A GP can also be considered as a random function

F : X 7→ Y

such that for any finite sequence x1:n = (x1, . . . , xn),
(F (x1), . . . ,F (xn)) follows a multivariate normal distribution.

A GP is fully determined by

a mean function m(x) ∈ Rn and
a covariance or kernel function K (x , x ′)) ∈ Rn×n

written as:
F ∼ GP(m(x),K (x , x ′))

For a particular instantiation x1:n = (x1, . . . , xn) :

(F (x1), . . . ,F (xn)) ∼ MN(m(x1:n),K (x1:n, x
′
1:n))
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Neural Networks and Gaussian Processes

A GP defines a prior over functions, which can be converted into a
posterior over functions once we have seen some data.

Theorem

Let f = (F (x1), . . .F (xn)) be the data we have seen (or called context points)
and f ∗ = (F (x∗1 ), . . . ,F (x∗m)) the data we want to predict (or called target
points). In addition, the prior over (f , f ∗)T is given by:(

f ∗

f

)
∼ MN

((
µ∗
µ

)
,

(
K (xi , xj) K (xi , x

∗
k)

K (x∗k , xi ), K (x∗k , x
∗
l )

))
Then the posterior for the unseen data f ∗ conditioned on f is given by:

f ∗|f ∼ MN(µf ∗|f ,Σf ∗|f )

where
µf ∗|f = K (x∗k , xi )K

−1(xi , xj)f

Σf ∗|f = K (x∗k , x
∗
l )− K (x∗k , xi )K

−1(xi , xj)K (xi , x
∗
k)
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Neural Networks and Gaussian Processes

Neural Network
Pros

Predictions are accurate.

Computational complexity is
O(n) in the inference process
where n is the number of data
points.

Cons

Only one single approximated
function is found.

Cannot be adapted once the
training phase is done.

Gaussian Processes
Pros

A distribution over potential
functions is produced →
uncertainty analysis

Shift some of the workload from
training to testing time → more
model flexibility

Cons

The kernel needs to be given
prior to fitting the GPs model.

Computational complexity is
O(n3) in the inference process.
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Attentive Neural Processes

Basic Idea
Since a Gaussian process can be considered as a random function, we
approximate a Gaussian process y ∼ GP(x) by:

y = g(x, z)

where z is a high-dimensional latent random vector capturing all the
randomness in the GP, and is assumed to be multivariate normal; g()
is a fixed and learnable function. Our goal is to find

p(y |x, z)
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Attentive Neural Processes

Model Overview
Encoder

Deterministic Encoder
Cross Attention
Latent Encoder

Decoder

 

RtEE aeg

Kim et.al. 2019
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Attentive Neural Processes

Model - Deterministic Encoder
Compute representations of each each (x , y) pair in the context set
through a self attention model, i.e., ri = hφ(xi , yi ), i ∈ C

 

RtEE aeg
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Attentive Neural Processes

Model - Cross Attention
Compute the representation for each target query x∗ by attending to
all the context xC = (xi )i∈C using cross-attention mechanism, i.e.,
r∗ = r∗(xC , rC , x∗)

Here we choose multihead as our cross-attention model.

 

RtEE aeg
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Attentive Neural Processes

Model - Latent Encoder
Find the distribution of the high-dimensional random vector z
representing the global randomness of the system.

Here we assume z follows a multivariate normal distribution.

 

RtEE aeg
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Attentive Neural Processes

Model - Decoder
Compute the distribution of the target output p(y∗|x∗, rC , z)

p(y∗|x∗, rC , z), by definition, is a multivariate normal distribution.

 

RtEE aeg
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Attentive Neural Processes

Loss Function

max{log p(yT |xT , xC , yC )}

which, by variational inference, is equivalent to

max{Eq(z|xC ,yC )[log p(yT |xT , z)]−KL (q(z|xT, yT )‖q(z|xC, yC ))}
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Experiments

Data Description
We use a 700× 327× 397 (vertical × crossline × inline) cube of
synthetic data to benchmark our model. There are 36 well logs in the
cube recording porosity values.

# points in total = 90, 873, 300
# seismic point = 18, 167, 447
# porosity point = 12159 (in 36 well logs)

Input & Output
Input: x = (i , j , k, flatten(scube))
Output: y

Variable Name Description

(i , j , k) ∈ R3 Location indices of the target point, vertical, crossline, and
inline, respectively

s ∈ R Seismic value at the target point
scube ∈ R7×5×5 A 7×5×5 (vertical × crossline × inline) seismic cube centered

at the target point
y ∈ R+ Porosity value at the target point
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Experiments

Model Architecture 

RtEE aeg Model Component Structure

Deterministic Encoder
sizes = [128, 128, 128, 128]
activation function = [relu, relu, relu, dense]

Cross Attention
sizes = [128]
activation function = [Conv1D]
# heads = 16

Latent Encoder
sizes = [128, 128, 128, 128]
activation function = [relu, relu, relu, dense]

Decoder
sizes = [128, 128, 2]
activation function = [relu, relu, dense]

Other Setups
Scale i , j , k to range [0, 1] and amplify seismic values by 10.
Set 0.001 as an lower bound of SD(ŷ∗)
# training iterations = 500,000

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 18 / 35



Results - Training

Figure: Training and validation data
distribution
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Results - Slices

Test Data Distribution
Depth range = [300, 350]
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Results - Slices

Example - a slice at depth = 310
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Results - Slices

Example - a slice at crossline = 180
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Results - Slices

Example - a slice at inline = 180
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Results - Slices

Results at all depths
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Results - Slices

Results at all crossline indices
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Results - Slices

Results at all inline indices
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Results - Vertical Logs

Test Data Distribution
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Results - Vertical Logs

Examples
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Results - Uncertainty Analysis

Histogram of ystd/ypred
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Results - Uncertainty Analysis

Confidence Interval (CI) Coverage

ytrue ∈ [ypred ± zα ∗ ystd ]

Confidence Level (α) Zα Coverage (%)

.95 1.960 89.75

.90 1.645 85.32

.68 1.000 59.39
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Conclusions and Future Directions

Conclusions

Attentive neural processes is an adaptive and computationally efficient
model for prediction and the corresponding uncertainty analysis.
The use of seismic patch as input and cross-attention improve the
prediction accuracy.
The standard deviation of the predicted values is highly correlated with
the residuals, which is unexpected in Gaussian processes-based models.
The estimated standard deviation is reasonable in terms of the CI
coverages.

Future Work

More inspections on the standard deviation of the predictions.
Run inference for the entire cube (computational issues occurred on
Google Cloud Computation Platform)
Apply the model to Groningen data
Adapt the model for few-shots regression
Convolutional neural processes
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Thank you!
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Appendix - Multihead Attention

Let Q,K ,V denote the query, keys, and values in the query system,
respectively.

MultiHead(Q,K ,V ) = concat(head1, . . . , headH)W

headh = DotProduct(QWQ
h ,KW

K
h ,VW

V
h )

DotProduct(Q,K ,V ) = softmax(QKT/
√
dk)V
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