
Well Logs Interpolation and Uncertainty Analysis Using
Neural Processes

Meng Jia
Mentored by Haibin Di

Geophysics Techonology Center, Schlumberger, Houston, Texas

MJia@slb.com

July 30, 2021

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 1 / 35

Overview

1 Problem Description

2 Neural Networks and Gaussian Processes

3 Attentive Neural Processes

4 Experiments

5 Results

6 Conclusions and Future Work

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 2 / 35

Problem Description

We aim to predict (or interpolate) the well log properties for an entire
site cube from sparsely available well logs and to use seismic data as
reference.

In addition, we want to quantify the uncertainty of the predictions.

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 3 / 35

Problem Description

We can formulate the problem as finding f̂ , a good approximation of
f , the true function. We then use f̂ for prediction and quantify the
uncertainty

y = f (x) = f (i , j , k , s)

where y is some well property, i , j , k are the coordinates, s denotes
the seismic data.

The task is two-fold:
Find f̂ , a good approximation of f which is used for prediction.

Neural networks

Quantify the uncertainty of new predictions, i.e., SD(f̂ (x∗)), where x∗

denotes a new observation point.

MC dropouts
Gaussian processes

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 4 / 35

Neural Networks and Gaussian Processes

A neural network (NN) is a parameterized function that can be tuned
via gradient descent to approximate the ground truth.

Parameters (or weights) are updated in a back-propagation pass. New
predicted value is computed in a forward pass.

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 5 / 35

Neural Networks and Gaussian Processes

A Gaussian process (GP) is a probabilistic model that defines a
distribution over possible functions, and is updated in light of data via
the rules of probabilistic inference.

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 6 / 35

Neural Networks and Gaussian Processes

A GP can also be considered as a random function

F : X 7→ Y

such that for any finite sequence x1:n = (x1, . . . , xn),
(F (x1), . . . ,F (xn)) follows a multivariate normal distribution.

A GP is fully determined by

a mean function m(x) ∈ Rn and
a covariance or kernel function K (x , x ′)) ∈ Rn×n

written as:
F ∼ GP(m(x),K (x , x ′))

For a particular instantiation x1:n = (x1, . . . , xn) :

(F (x1), . . . ,F (xn)) ∼ MN(m(x1:n),K (x1:n, x
′
1:n))

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 7 / 35

Neural Networks and Gaussian Processes

A GP defines a prior over functions, which can be converted into a
posterior over functions once we have seen some data.

Theorem

Let f = (F (x1), . . .F (xn)) be the data we have seen (or called context points)
and f ∗ = (F (x∗1), . . . ,F (x∗m)) the data we want to predict (or called target
points). In addition, the prior over (f , f ∗)T is given by:(

f ∗

f

)
∼ MN

((
µ∗
µ

)
,

(
K (xi , xj) K (xi , x

∗
k)

K (x∗k , xi), K (x∗k , x
∗
l)

))
Then the posterior for the unseen data f ∗ conditioned on f is given by:

f ∗|f ∼ MN(µf ∗|f ,Σf ∗|f)

where
µf ∗|f = K (x∗k , xi)K

−1(xi , xj)f

Σf ∗|f = K (x∗k , x
∗
l)− K (x∗k , xi)K

−1(xi , xj)K (xi , x
∗
k)

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 8 / 35

Neural Networks and Gaussian Processes

Neural Network
Pros

Predictions are accurate.

Computational complexity is
O(n) in the inference process
where n is the number of data
points.

Cons

Only one single approximated
function is found.

Cannot be adapted once the
training phase is done.

Gaussian Processes
Pros

A distribution over potential
functions is produced →
uncertainty analysis

Shift some of the workload from
training to testing time → more
model flexibility

Cons

The kernel needs to be given
prior to fitting the GPs model.

Computational complexity is
O(n3) in the inference process.

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 9 / 35

Neural Networks and Gaussian Processes

Neural Network
Pros

Predictions are accurate.

Computational complexity is
O(n) in the inference process
where n is the number of data
points.

Cons

Only one single approximated
function is found.

Cannot be adapted once the
training phase is done.

Gaussian Processes
Pros

A distribution over potential
functions is produced →
uncertainty analysis

Shift some of the workload from
training to testing time → more
model flexibility

Cons

The kernel needs to be given
prior to fitting the GPs model.

Computational complexity is
O(n3) in the inference process.

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 9 / 35

Attentive Neural Processes

Basic Idea
Since a Gaussian process can be considered as a random function, we
approximate a Gaussian process y ∼ GP(x) by:

y = g(x, z)

where z is a high-dimensional latent random vector capturing all the
randomness in the GP, and is assumed to be multivariate normal; g()
is a fixed and learnable function. Our goal is to find

p(y |x, z)

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 10 / 35

Attentive Neural Processes

Model Overview
Encoder

Deterministic Encoder
Cross Attention
Latent Encoder

Decoder

RtEE aeg

Kim et.al. 2019

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 11 / 35

Attentive Neural Processes

Model - Deterministic Encoder
Compute representations of each each (x , y) pair in the context set
through a self attention model, i.e., ri = hφ(xi , yi), i ∈ C

RtEE aeg

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 12 / 35

Attentive Neural Processes

Model - Cross Attention
Compute the representation for each target query x∗ by attending to
all the context xC = (xi)i∈C using cross-attention mechanism, i.e.,
r∗ = r∗(xC , rC , x∗)

Here we choose multihead as our cross-attention model.

RtEE aeg

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 13 / 35

Attentive Neural Processes

Model - Latent Encoder
Find the distribution of the high-dimensional random vector z
representing the global randomness of the system.

Here we assume z follows a multivariate normal distribution.

RtEE aeg

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 14 / 35

Attentive Neural Processes

Model - Decoder
Compute the distribution of the target output p(y∗|x∗, rC , z)

p(y∗|x∗, rC , z), by definition, is a multivariate normal distribution.

RtEE aeg

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 15 / 35

Attentive Neural Processes

Loss Function

max{log p(yT |xT , xC , yC)}

which, by variational inference, is equivalent to

max{Eq(z|xC ,yC)[log p(yT |xT , z)]−KL (q(z|xT, yT)‖q(z|xC, yC))}

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 16 / 35

Experiments

Data Description
We use a 700× 327× 397 (vertical × crossline × inline) cube of
synthetic data to benchmark our model. There are 36 well logs in the
cube recording porosity values.

points in total = 90, 873, 300
seismic point = 18, 167, 447
porosity point = 12159 (in 36 well logs)

Input & Output
Input: x = (i , j , k, flatten(scube))
Output: y

Variable Name Description

(i , j , k) ∈ R3 Location indices of the target point, vertical, crossline, and
inline, respectively

s ∈ R Seismic value at the target point
scube ∈ R7×5×5 A 7×5×5 (vertical × crossline × inline) seismic cube centered

at the target point
y ∈ R+ Porosity value at the target point

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 17 / 35

Experiments

Model Architecture

RtEE aeg Model Component Structure

Deterministic Encoder
sizes = [128, 128, 128, 128]
activation function = [relu, relu, relu, dense]

Cross Attention
sizes = [128]
activation function = [Conv1D]
heads = 16

Latent Encoder
sizes = [128, 128, 128, 128]
activation function = [relu, relu, relu, dense]

Decoder
sizes = [128, 128, 2]
activation function = [relu, relu, dense]

Other Setups
Scale i , j , k to range [0, 1] and amplify seismic values by 10.
Set 0.001 as an lower bound of SD(ŷ∗)
training iterations = 500,000

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 18 / 35

Results - Training

Figure: Training and validation data
distribution

0 100 200 300 400 500 600
vertical index

0.0

0.1

0.2

0.3

0.4

0.5

po
ro

sit
y

w28

0 100 200 300 400 500 600
vertical index

0.0

0.1

0.2

0.3

0.4

0.5

po
ro

sit
y

w29

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 19 / 35

Results - Slices

Test Data Distribution
Depth range = [300, 350]

50 75 100 125 150 175 200 225
crossline

50

100

150

200

250

300

350

in
lin

e

1

10

11

12

13
14

17

19

2

21

2223

24
25

26
27

28

29

3 30

31

32

33

34
35

37

4

40

41

42

43
45

6

78

9

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 20 / 35

Results - Slices

Example - a slice at depth = 310

100 200
croosline

100

150

200

in
lin

e

Truth

100 200
100

150

200
Prediction

100 200
100

150

200
Seismic

100 200
100

150

200
Residual

100 200
100

150

200
Std

0.1

0.2

0.3

0.1

0.2

0.3

0.25

0.00

0.25

0.1

0.2

0.1

0.2

dep = 310

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 21 / 35

Results - Slices

Example - a slice at crossline = 180

100 200
inline

300

350

ve
rti

ca
l Truth

100 200
300

350
Prediction

100 200
300

350
Seismic

100 200
300

350
Residual

100 200
300

350
Std

0.1

0.2

0.3

0.1

0.2

0.3

0.2

0.0

0.2

0.1

0.2

1

0

xl = 180

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 22 / 35

Results - Slices

Example - a slice at inline = 180

100 200
crossline

300

350

ve
rti

ca
l Truth

100 200
300

350
Prediction

100 200
300

350
Seismic

100 200
300

350
Residual

100 200
300

350
Std

0.1

0.2

0.1

0.2

0.25

0.00

0.25

0.1

0.2

1

0

1

il = 180

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 23 / 35

Results - Slices

Results at all depths

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 24 / 35

Results - Slices

Results at all crossline indices

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 25 / 35

Results - Slices

Results at all inline indices

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 26 / 35

Results - Vertical Logs

Test Data Distribution

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 27 / 35

Results - Vertical Logs

Examples

0 100 200 300 400 500 600
crossline

0.0

0.1

0.2

0.3

0.4

0.5

in
lin

e

porosity at [150, 300]

Figure: A good example

0 100 200 300 400 500 600
crossline

0.0

0.1

0.2

0.3

0.4

0.5

in
lin

e

porosity at [200, 300]

Figure: A bad example

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 28 / 35

Results - Uncertainty Analysis

Histogram of ystd/ypred

0.0 0.2 0.4 0.6 0.8 1.0
ystd/ypred

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pr
ob

ab
ilit

y
(%

)

Histogram of ystd/ypred

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 29 / 35

Results - Uncertainty Analysis

Confidence Interval (CI) Coverage

ytrue ∈ [ypred ± zα ∗ ystd]

Confidence Level (α) Zα Coverage (%)

.95 1.960 89.75

.90 1.645 85.32

.68 1.000 59.39

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 30 / 35

Conclusions and Future Directions

Conclusions

Attentive neural processes is an adaptive and computationally efficient
model for prediction and the corresponding uncertainty analysis.
The use of seismic patch as input and cross-attention improve the
prediction accuracy.
The standard deviation of the predicted values is highly correlated with
the residuals, which is unexpected in Gaussian processes-based models.
The estimated standard deviation is reasonable in terms of the CI
coverages.

Future Work

More inspections on the standard deviation of the predictions.
Run inference for the entire cube (computational issues occurred on
Google Cloud Computation Platform)
Apply the model to Groningen data
Adapt the model for few-shots regression
Convolutional neural processes

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 31 / 35

References

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D.J.,
Eslami, S.M. and Teh, Y.W., 2018. Neural processes. arXiv preprint
arXiv:1807.01622.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum,
D., Vinyals, O. and Teh, Y.W., 2019. Attentive neural processes.
arXiv preprint arXiv:1901.05761.

https://github.com/deepmind/neural-processes

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 32 / 35

https://github.com/deepmind/neural-processes

Acknowledgement

Haibin, for being a good and kind mentor and all the help along the
way

Zhun, for all the discussions and precious suggestions

Hiren, Aria, for insights into my project

Anisha, Tao, for setting up computational resources

Everyone in the group, for every interesting topics in the casual
meetings

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 33 / 35

Thank you!

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 34 / 35

Appendix - Multihead Attention

Let Q,K ,V denote the query, keys, and values in the query system,
respectively.

MultiHead(Q,K ,V) = concat(head1, . . . , headH)W

headh = DotProduct(QWQ
h ,KW

K
h ,VW

V
h)

DotProduct(Q,K ,V) = softmax(QKT/
√
dk)V

Meng Jia Mentored by Haibin Di (GTC, SLB) NPs for well logs July 30, 2021 35 / 35

	Problem Description
	Neural Networks and Gaussian Processes
	Attentive Neural Processes
	Experiments
	Results
	Conclusions and Future Work

	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	anm2:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	anm1:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

