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Problem Description

@ We aim to predict (or interpolate) the well log properties for an entire
site cube from sparsely available well logs and to use seismic data as
reference.

@ In addition, we want to quantify the uncertainty of the predictions.
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Problem Description

@ We can formulate the problem as finding f a good approximation of
f, the true function. We then use f for prediction and quantify the
uncertainty

Yy = f(X) - f(’7./7 k,S)

where y is some well property, /,j, k are the coordinates, s denotes
the seismic data.
@ The task is two-fold:
o Find f, a good approximation of f which is used for prediction.
o Neural networks

o Quantify the uncertainty of new predictions, i.e., SD()?(X*)), where x*
denotes a new observation point.
o
o Gaussian processes
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Neural Networks and Gaussian Processes

@ A neural network (NN) is a parameterized function that can be tuned
via gradient descent to approximate the ground truth.

@ Parameters (or weights) are updated in a back-propagation pass. New
predicted value is computed in a forward pass.

Input layer
Hidden layer
Output layer

[ weight update

T e
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Neural Networks and Gaussian Processes

@ A Gaussian process (GP) is a probabilistic model that defines a
distribution over possible functions, and is updated in light of data via
the rules of probabilistic inference.
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Neural Networks and Gaussian Processes

@ A GP can also be considered as a random function

F: X—Y
such that for any finite sequence x1., = (X1,...,Xn),
(F(x1),...,F(xn)) follows a multivariate normal distribution.

@ A GP is fully determined by

e a mean function m(x) € R" and
e a covariance or kernel function K(x,x’)) € R"™"

written as:
F ~ GP(m(x), K(x,x"))

e For a particular instantiation x1.n = (X1,...,Xn) :

(F(X1)7 ) F(Xn)) ~ MN(m(Xlin)v K(Xlifh X/1:n))
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Neural Networks and Gaussian Processes

@ A GP defines a prior over functions, which can be converted into a
posterior over functions once we have seen some data.

Theorem

Let f = (F(x1),...F(xn)) be the data we have seen (or called context points)
and * = (F(x{),..., F(x%)) the data we want to predict (or called target
points). In addition, the prior over (f,f*)T is given by:

f* L K(xi, %)) K(x; x*)>>
~ M (((He) (S0a) KX
<f) <<M) (K(xk,x,-), K (x> %)
Then the posterior for the unseen data f* conditioned on f is given by:

£\ ~ MN (e, Zref)

where
M| f = K(XLXI')Kil(XhXj)f

Teetr = KXo xi') = K (e, xi) K (15 ) K (i, Xi)

v
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Neural Networks and Gaussian Processes

Neural Network
Pros

@ Predictions are accurate.

@ Computational complexity is
O(n) in the inference process
where n is the number of data
points.

Cons
@ Only one single approximated
function is found.

@ Cannot be adapted once the
training phase is done.
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Neural Networks and Gaussian Processes

Neural Network Gaussian Processes
Pros Pros
@ Predictions are accurate. @ A distribution over potential
e Computational complexity is functior?s is produc_:ed -
O(n) in the inference process uncertainty analysis
where n is the number of data @ Shift some of the workload from
points. training to testing time — more
Cons model flexibility

@ Only one single approximated Cons

function is found. @ The kernel needs to be given

o Cannot be adapted once the prior to fitting the GPs model.

training phase is done. e Computational complexity is
O(n3) in the inference process.
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Attentive Neural Processes

o Basic Idea
Since a Gaussian process can be considered as a random function, we
approximate a Gaussian process y ~ GP(x) by:

Yy = g(X,Z)

where z is a high-dimensional latent random vector capturing all the
randomness in the GP, and is assumed to be multivariate normal; g()
is a fixed and learnable function. Our goal is to find

p(y|x,2)
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Attentive Neural Processes

@ Model Overview
e Encoder

@ Deterministic Encoder
o Cross Attention
o Latent Encoder

e Decoder

ENCODER
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Attentive Neural Processes

@ Model - Deterministic Encoder

Compute representations of each each (x, y) pair in the context set
through a self attention model, i.e., r; = hy(x;,y;),i € C

ENCODER DECODER
Xy
r.> MLP A
XN Y1 2
X Y2
Deterministic
X y. Path
2 i N B il O P e W Latent
Path
@ Mean
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Attentive Neural Processes

@ Model - Cross Attention
Compute the representation for each target query x, by attending to
all the context x¢ = (x;j)jcc using cross-attention mechanism, i.e.,
ry = r*(XCvrCaX*)
e Here we choose multihead as our cross-attention model.

ENCODER DECODER

X

r*’ 5

12

Deterministic
Path

Latent

Path

@ Mean
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Attentive Neural Processes

@ Model - Latent Encoder
Find the distribution of the high-dimensional random vector z
representing the global randomness of the system.

o Here we assume z follows a multivariate normal distribution.

ENCODER DECODER
— Xs
r«%| MLP N
Self- y
attn,
X1 Y1 |~ ] ,
—J
X Yo | B
N > S5 == Deterministic
X, y. \\A ! i Path
- ’ b : Latent
e | attng > S, '@’ Sc "@" | ------ Bathi
~al i
™ Ss - @ Mean
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Attentive Neural Processes

o Model - Decoder
Compute the distribution of the target output p(yx|x«, rc, z)
o p(Vi|X«, rc, z), by definition, is a multivariate normal distribution.

ENCODER DECODER
X
N
i -» -
Cross-
X Vi attention 2
X VY.
Deterministic
" v Path
¢ g Latent

Path

@ Mean
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Attentive Neural Processes

@ Loss Function

max{log p(y7|xT,xc,yc)}

which, by variational inference, is equivalent to

max{Eq(zxc.yc)llog p(yTIxT,2)] — KL (q(z[xT, y7)lla(zlxc, yc))}
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o Data Description
We use a 700 x 327 x 397 (vertical x crossline x inline) cube of
synthetic data to benchmark our model. There are 36 well logs in the
cube recording porosity values.
e # points in total = 90,873,300
e # seismic point = 18,167,447
o # porosity point = 12159 (in 36 well logs)
@ Input & Output
o Input: x = (i, J, k, flatten(scupe))

o Output: y
Variable Name [ Description
(i,j, k) €R3 Location indices of the target point, vertical, crossline, and
inline, respectively
selR Seismic value at the target point

Tx5%5
Scube € R

A 7x5x5 (vertical x crossline X inline) seismic cube centered
at the target point

yeRy

Porosity value at the target point
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Experiments

@ Model Architecture

ENCODER DECODER Model Component [ Structure

sizes — [128, 128, 128, 128]
activation function = [relu, relu, relu, dense]

Deterministic Encoder

sizes = [128]
Cross Attention activation function = [Conv1D]
# heads = 16
Latent Encoder sizes = (128, 12.8’ 128, 128]
activation function = [relu, relu, relu, dense]

sizes = [128, 128, 2]

Decoder activation function = [relu, relu, dense]

o Other Setups

o Scale i, j, k to range [0, 1] and amplify seismic values by 10.
o Set 0.001 as an lower bound of SD(y.)
e # training iterations = 500,000
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Results - Slices

@ Test Data Distribution
Depth range = [300, 350]
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Results - Slices

@ Example - a slice at depth = 310

dep = 310

500 Truth 0.3 00 Prediction 0.3 Seismic
: C 0.2
o 0.2 -. 0.2 :
< 150 150
= 0.1 0.1 0-1
100 : : 100 4
100 100 20
croosline
Residual Std
200 025 200
0.2
150 0.00 150
-0.25 0.1
100 +— 100 +
100 20 100 20
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Results - Slices

@ Example - a slice at crossline = 180

xl = 180
_ Truth Prediction|| Seismic
G 350 350 350
o
[
2 300 300 300
100 20f 01 100 20p 01 100 20p
inline
. 0.2
Residual Std 0.2
350 350
300 300 '
100 208 0.2 100 20
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Results - Slices

@ Example - a slice at inline = 180

il =180
Lo . . 1

_ Truth Prediction Seismic
© 350 0.2 350 0.2 350
ke, 0
(]
> 300 300 300

100 20 0.1 100 20 01 100 2 1
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Results - Slices

@ Results at all depths

dep = 300

o Prediction, Seismic

Truth

200
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@ Results at all crossline indices
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@ Results at all inline indices
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Results - Vertical Logs

@ Test Data Distribution
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Results - Vertical Logs

@ Examples

s porosity at [150, 300] s porosity at [200, 300]
0.4 0.4
03 03
2 2
T o2 T o2
0.1 0.1
0.0 0.0
100 200 300 400 500 600 100 200 300 400 500 600
crossline crossline

Figure: A good example Figure: A bad example
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Results - Uncertainty Analysis

o Histogram of ysiq/ypred

Histogram of ysta/ypred
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Results - Uncertainty Analysis

e Confidence Interval (Cl) Coverage

Ytrue € [Ypred £z, * y$td]

Confidence Level («) | Z, Coverage (%)
.95 1.960 | 89.75
.90 1.645 | 85.32
.68 1.000 | 59.39
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Conclusions and Future Directions

@ Conclusions

o Attentive neural processes is an adaptive and computationally efficient
model for prediction and the corresponding uncertainty analysis.

e The use of seismic patch as input and cross-attention improve the
prediction accuracy.

e The standard deviation of the predicted values is highly correlated with
the residuals, which is unexpected in Gaussian processes-based models.

o The estimated standard deviation is reasonable in terms of the Cl
coverages.

o Future Work
e More inspections on the standard deviation of the predictions.
e Run inference for the entire cube (computational issues occurred on
Google Cloud Computation Platform)
Apply the model to Groningen data
Adapt the model for few-shots regression
e Convolutional neural processes
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Thank you!
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Appendix - Multihead Attention

Let Q, K, V denote the query, keys, and values in the query system,
respectively.
MultiHead(Q, K, V) = concat(heads, . .., heady) W
head), = DotProduct(QWS, KWK, vwY)
DotProduct(Q, K, V) = softmax(QK ™ /+/di)V
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